MATLAB CURVE FITTING TOOLBOX - RELEASE NOTES Uživatelská příručka Strana 44

  • Stažení
  • Přidat do mých příruček
  • Tisk
  • Strana
    / 216
  • Tabulka s obsahem
  • KNIHY
  • Hodnocené. / 5. Na základě hodnocení zákazníků
Zobrazit stránku 43
2 Importing, Viewing, and Preprocessing Data
2-10
The Curve Fitting Toolbox supports these smoothing methods:
Moving average filtering Lowpass filter that takes the average of
neighboring data points.
Lowess and loess Locally weighted scatter plot smooth. These methods
use linear least squares fitting, and a first-degree polynomial (lowess) or a
second-degree polynomial (loess). Robust lowess and loess methods that are
resistant to outliers are also available.
Savitzky-Golay filtering A generalized moving average where you derive
the filter coefficients by performing an unweighted linear least squares fit
using a polynomial of the specified degree.
Note that you can also smooth data using a smoothing spline. Refer to
Nonparametric Fitting on page 3-68 for more information.
You smooth data with the Smooth pane of the Data GUI. The pane is shown
below followed by a description of its features.
Data sets
Data sets list
Smoothing method
and parameters
Zobrazit stránku 43
1 2 ... 39 40 41 42 43 44 45 46 47 48 49 ... 215 216

Komentáře k této Příručce

Žádné komentáře